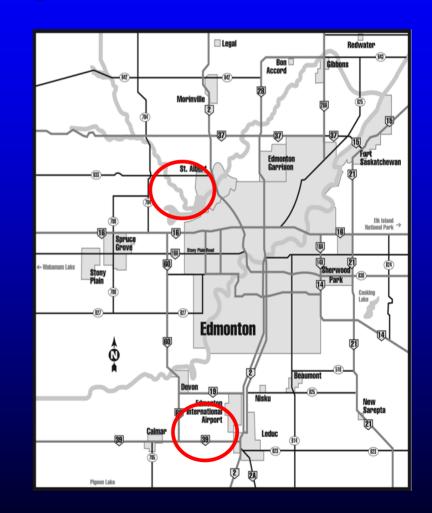

Integrated Management of Clubroot of Crucifers Research Team: <u>S.E. Strelkov</u>, S.F. Hwang, R.J. Howard, H. Rahman & M. Hartman

Project Funders

- Agriculture and Food Council of Alberta (50%)
- Alberta Canola Producers Commission (25%)
- Alberta Crop Industry Development Fund (25%)

-Current Project End-Date: Sept. 30, 2010


Main Objectives

- (1) Develop and assess new and existing clubroot management strategies
- (2) Identify and characterize sources of resistance
- (3) Evaluate diversity in pathogen populations
- (4) Monitor clubroot occurrence and spread

Research providing the first information on these topics in Canada (5 years ago, we knew nothing!)

Evaluation of Clubroot Management Strategies

- Determine effects of soil amendments & chemical soil treatments on clubroot severity
- Two locations:
 - Sturgeon County
 - Leduc County
- Experiments established in 2007

Soil Amendments

- Calcium carbonate – 2.5, 5.0 & 7.5 t/ha
- Wood ash
 - 2.5, 5.0 & 7.5 t/ha
- Calcium cyanamide - 0.5 & 1.0 t/ha

Untreated controls included in both sets of experiments

Chemical Treatments

- Allegro 500F
 - Fluazinam
 - 3.5 & 5.0 L/ha
- Ranman 400 SC
 - Cyazofamid
 - 2.0 & 7.5 L/ha
- Zonix
 - Rhamnolipid biosurfactant
 - 1000 L/ha
- Terraclor 75 WP
 - Pentachlronitrobenzene
 - 45 & 90 kg/ha

Chemical Amendments & Soil Treatments

• Terraclor 75 WP and treatment with high levels of calcium carbonate or wood ash significantly reduced impact of clubroot

Identification of Resistance Sources

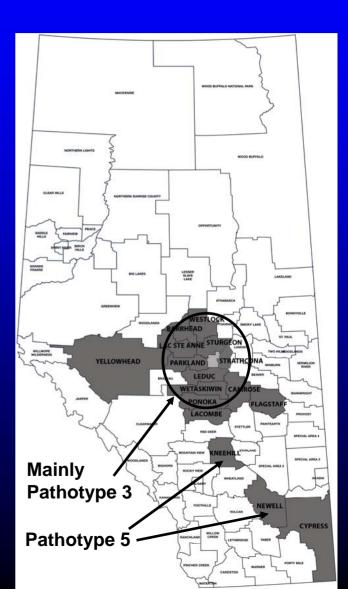
- Greenhouse and field screening for sources of resistance
- Screening of lines and accessions
 - U of A Canola Breeding Program & industry
- Contribution to the development of clubroot resistant canola for the Canadian market

I. Falak, Pioneer

Diversity in Pathogen Populations

- Knowledge of pathogenic diversity in *P. brassicae* populations is critical to resistance breeding efforts
- Characterizing populations and single-spore isolates on host differential sets
- Evaluating diversity through molecular techniques
 - Development of molecular markers

Pathotypes of P. brassicae

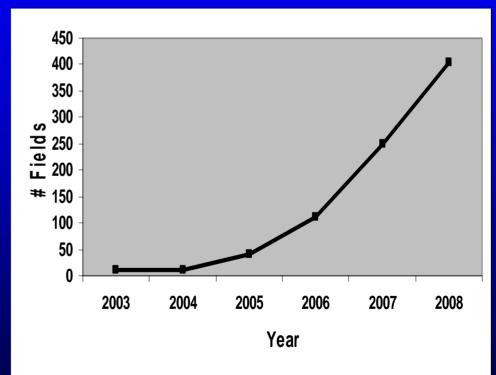

- The virulence of *P. brassicae* populations/isoaltes from Alberta (& other parts of Canada) has been evaluated on three differential sets:
 - European Clubroot Differential (ECD) set
 - Differentials of Williams (1966)
 - Differentials of Somé et al. (1996)

Numerous Pathotypes Identified

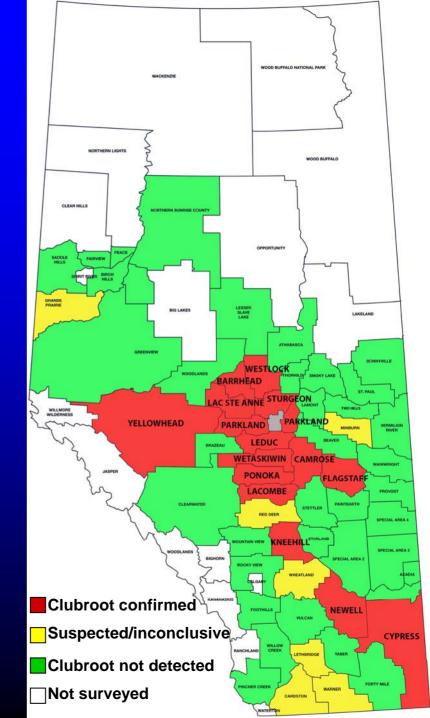
• Central Alberta:

- Pathotype 3 (P₂) accounts for >90% of populations and >70% of single-spore isolates analyzed
- Other pathotypes present but rare (pathotypes 2, 5, 6 & 8)
- Southern Alberta:
 - Pathotype 5 (P₃) found
 - (only two populations analyzed)

Suggests diversity & potential for evolution of new strains/pathotypes of P. brassicae


Development of Molecular Markers

- Development of markers to distinguish strains/pathotypes of the pathogen
- Inherent difficulties in working with an obligate parasite
- Promising results with Cleaved Amplified Polymorphic Sequence (CAPS) analysis


Monitoring Clubroot Occurrence and Spread

- Annual surveys for clubroot conducted by U of A in collaboration with AARD and agricultural fieldmen
- Rapid increase in number of infested fields
 - Yield losses range from trace to 100%

Occurrence in Alberta

- Clubroot confirmed in 405 fields
 - 5685 fields surveyed
 - About 7% clubrootpositive
- 16 municipalities & City of Edmonton
 - Additional cases
 suspected but not
 confirmed

Conclusions

- Promising soil treatments and amendments identified for clubroot control on canola
 - Use in conjunction with other tools?
 - Seeding date, resistance
- Identification of sources of resistance, screening for resistance
 - Important for the development of clubroot resistant canola

Conclusions

- Pathogenic diversity found in *P. brassicae* populations and single-spore isolates

 Pathotype 3 or P₂ is predominant, but others also occur
- Clubroot now established in Alberta
 - Appears to be spreading
- This project has served to increase knowledge of clubroot and its management, and represents a strong foundation from which to proceed