Development of a New Clubroot Differential Set

S.E. Strelkov, T. Cao, V.P. Manolii and S.F. Hwang

Clubroot Summit Edmonton, March 7, 2012

Background

- Multiple strains of *P. brassicae* are known to exist
 - Differ in their ability to infect different host species, lines or cultivars
 - 'Physiologic specialization' = the occurrence of multiple races or pathotypes
- Breeding efforts must be guided by a good understanding of pathogenic diversity in *P*. *brassicae* populations!

Assessments of Pathogenic Diversity

Strains of a pathogen are identified by their virulence on a *host differential set*

Differential Set

= A group of host plants that serve to distinguish between various strains of a pathogen based on disease symptoms

(Definition modified from APSnet)

S S S R S

Pathogen isolates are grouped into strains based on the symptoms they cause on a defined group of hosts

Clubroot Differential Sets

- Numerous differential sets have been proposed to identify clubroot strains
- Three differential sets are most commonly used:
 - Williams (1966)
 - European Clubroot Differential Set (1975)
 - Differentials of Somé et al. (1996)
- Each has its advantages & disadvantages

Williams' Differential Set

- Developed by P.H. Williams (1966)
- Differential set consists of two rutabagas and two cabbage cultivars
- Advantage: Straight-forward and consists of a small set of hosts
- Disadvantage: Developed to identify pathogen strains from cabbage and rutabaga

European Clubroot Differential (ECD) Set

- Developed by Buczacki et al. (1975) as an 'international system' for strain identification
- Differential set consists of three subsets:
 - *B. rapa* subset (5 hosts)
 - *B. napus* subset (5 hosts)
 - *B. oleracea* subset (5 hosts)
- Advantages: Information on multiple species, enables comparisons
- **Disadvantages:** Lots of hosts, not all hosts differential; complicated strain nomenclature

Differential Set of Somé et al.

- Developed by Somé et al. (1996) to identify pathogen strains from France
- Consists of three B. napus hosts
- Advantages: Straight-forward and consists of a small set of hosts; based on reaction of *B. napus*
- **Disadvantages:** Low differentiating capacity (we can miss strains)

Situation in Canada

- Since the identification of clubroot on canola, we have used all three systems to enable comparisons
- Has been effective in identifying predominant strains, but not a perfect system
- Challenges:
 - Involves a large group of differential hosts
 - Some pathotype distinctions relevant for canola, others are not
 - May not effectively identify all relevant strains

Strains of P. brassicae in Alberta

"Field Populations"

Single-Spore Isolates

Classification on the differentials of Williams (1966) Pathotype $3 \approx ECD \ 16/15/12$ or P_2 (Some et al. 1996)

Howard et al. 2010

Strain Identification

Another challenge:

- Some differentials give intermediate and fluctuating disease reactions
- What's a resistant reaction and what's not?
- LeBoldus et al. (2012): host considered resistant if index of disease was <50% and the 95% CI did not overlap 50%

Adapted from Strelkov et al. (2006)

Fluctuating Reactions

- Largely result of heterogeneity
- In pathogen:
 - Can be addressed by using single-spore isolates instead of populations
- In host:
 - Can be addressed by selecting differentials that give clean reactions

Pathotypes or Races?

- Largely because of these issues, we refer to clubroot 'pathotypes' instead of 'races'
- Terms are largely synonymous <u>but</u>:
 - 'Pathotype' is a looser term
 - More appropriate because neither the differential hosts nor pathogen populations possess genetic uniformity necessary to apply concept of races to the clubroot pathosystem

A New Differential Set?

 Given the amount of clubroot work being conducted in Canada and the limitations of existing differentials, a new differential set would be beneficial to identify pathogen strains from canola **Criteria Required of a New Differential Set** (According to Strelkov!)

- A new set of differentials would have to meet four criteria:
- (1) Good differential capacity
- (2) Relevance to canola production
- (3) Consistent & clear results
- (4) Seeds of differentials must be available

Development of a New Differential Set

- Using a phased procedure to develop a differential set for *P. brassicae* from canola
 - Consultation of literature & previous studies
 - Screening of *Brassica* genotypes with representative single-spore isolates & populations from Canada
 - Identify subset of putative differentials for screening with wider set of isolates

Considerations

- Existing differential sets as a starting point
 - Retention of key <u>effective</u> differentials would allow comparisons with literature and international colleagues
- Focus on *B. napus* genotypes with good differentiating capacity, but also include some key *B. rapa* genotypes (exclude *B. oleracea*)
- Include hosts with IDs < 20% or > 80%
 - Avoid hosts with IDs between 20-80% ('indistinct reactions' Toxopeus et al. 1986)

Brassica napus

- Greatest differentiating capacity observed in B. napus genotypes (both in our tests & in an international analysis)
 - Some can distinguish <u>between</u> existing pathotype designations (e.g., pathotype 3 vs. pathotypes 5 & 6)
 - Some can differentiate <u>within</u> existing pathotypes (e.g., pathotype 6 isolates from BC & ON)

Differential	Original Pathotype Designation (Differentials of Williams)				
Host	3	5 (AB)	5 (MB)	6 (BC)	6 (ON)
ECD 06	+	+	+	-	-
ECD 07	+	-	+	+	-
ECD 08	+	+	+	-	-
ECD 09	+	-	+	-	-
ECD 10	-	-	-	-	-
'Brutor'	+	+	+	+	-

Strelkov, unpublished

MB 'pathotype 5' = AB 'pathotype 3' ON pathotype 6 ≠ BC pathotype 6 (ON strain attacks only cabbage)

Brassica napus

- Could also include 'Mendel'
- Some commercial Canadian canola cultivars?
 - Two cultivars seem to distinguish pathotype 6 from ON & BC
 - Cultivar/germplasm resistant to pathotype 3
- *B. napus* susceptible check to replace Chinese cabbage ECD 05?

Brassica rapa

- B. rapa (Polish rape) hosts ECD 01 04 closely related
 - All are resistant to isolates tested from Canada
 - Also did not contribute to differentiation in an international analysis (Toxopeus et al. 1986)
 - Equally well-represented by ECD 03 alone
- Worth keeping ECD 02 as resistant check
 - Prefer ECD 02 to 03 because of clearer reactions in our tests
- Chinese cabbage (ECD 05) as a susceptible check?

Putative Canadian Clubroot Differentials for Further Testing

Common name	Scientific name	Cultivar or line	ECD No.
Polish rape	Brassica rapa var. rapifera	Line AAbbCC	02
Chinese cabbage	B. rapa var. pekinensis	'Granaat'	05
Fodder rape	B. napus var. napus	'Nevin'	06
Fodder rape	B. napus var. napus	'Giant Rape'	07
Fodder rape	B. napus var. napus	Giant Rape Selection	08
Fodder rape	B. napus var. napus	New Zealand Resistant Rape	09
Rutabaga	B. napus var. napobrassica	'Wilhemsburger'	10
Spring oilseed rape	B. napus var. napus	'Brutor'	n/a
Winter oilseed rape	B. napus var. napus	'Mendel'	n/a
Spring canola	B. napus var. napus	'Westar'	n/a
Spring canola	B. napus var. napus	Commercial cv. (R)	n/a
Spring canola	B. napus var. napus	Commercial cv. (S)	n/a

Advantages of 'Canadian Clubroot Differential' (CCD)

- Less differential hosts involved
- Clearer reactions
 - If used with single-spore isolates, perhaps could move to a race nomenclature system
- Better suited to detect variation in pathogenicity on *B. napus* as opposed to cabbage or other hosts
- Can compare results obtained with CCD with those obtained with *B. napus* subset of ECD and differentials of Somé et al. (1996)
 - Facilitate international collaboration & comparisons with historical record

Next Steps

- Receive your input!
- Inoculate putative differentials with selected single-spore isolates and populations
- Finalize list of differentials
- Determine race numbering scheme

Acknowledgements

- Financial support through the Clubroot Risk Mitigation Initiative
- H. Rahman (U of A), Horticulture Research International (UK) & various companies for providing host genotypes
- E. Diederichsen (*Freie Universität Berlin*) for helpful discussions